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SUMMARY 

The shallow-water equations in radial symmetry are solved numerically to simulate the collapse of a 
cylindrical liquid column into an area surrounded by a concentric dike. The following three subcases of 
this problem are considered: a liquid column collapsing onto a layer of the same liquid, a liquid column 
collapsing onto a solid surface, and a column of lighter liquid collapsing onto a heavier liquid (i.e. 
liquefied natural gas (LNG) spilled onto water). The results for the three categories are compared and 
the differences and similarities between them are analysed. 
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INTRODUCTION 

The use of liquefied gaseous fuels (LGF) as energy sources is on the increase in the United 
States. Safe transport and storage of these fuels is very important because of the possible 
severe consequences of an accidental spill. Lawrence Livermore National Laboratory is 
investigating the possible consequences of accidental LGF spills for the Department of 
Energy. 

The fuels of interest, such as natural gas, are gaseous at normal ambient temperatures and 
pressures; however, when condensed into a cryogenic liquid, they are immiscible with water 
and less dense then water. Consequently, an accidental spill of such a fuel on land or water 
results in a rapidly spreading liquid pool of evaporating fuel on top of the surface. The liquid 
fuel vaporizes as it spreads, creating a cold, dense cloud of gaseous fuel. If the vapour cloud 
is ignited, several different combustion phenomena could occur, such as a pool fire, a flame 
propagating through the cloud, or an explosion. 

In this, the first of two reports dealing with spreading of an LGF, attention is directed to 
the adaptation and application of the one-dimensional finite difference modell for the 
purpose of simulating an instantaneous release of a liquid from a collapsed storage tank into 
an area enclosed by a vertical impounding dike. 

Three types of such spills are considered, as shown in Figure 1. Together, these represent a 
set of relevant, though idealized, scenarios for a ‘worst-case’ accident involving an LGF 
storage facility. One category includes the cases in which a column of liquid is allowed to 
collapse onto a body of heavier liquid idealized as having infinite depth. The actual example 
treated here will be the spill of LNG onto a water surface. Another category deals with the 
collapse of a liquid column onto a finite depth layer of the same liquid, laying above a solid 
surface. It will be referred to from this point on, as ‘column of liquid collapsing onto a layer 
of the same liquid’. Finally, the collapse of a liquid column onto a solid surface is considered. 
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Figure I. Schematic diagram of the spill geometry: (a) a liquid on a denser liquid, (b) a liquid on a layer of the same 
liquid, and (c) a liquid on a solid surface 

Though similar to the previous case, in that both are bounded from below by a solid surface, 
this last category is different, since the space between the outer edge of the liquid column 
and the dike is initially void of any liquid. 

The particular class of problems described constitutes a demanding test for any numerical 
model, since it entails in a single case the collapse of a liquid column, surge against a dike, 
rebound from the dike and formation of a shock (bore), and its propagation towards the 
origin. The finite difference approach presented herein is capable of treating all the aspects 
of the fluid flow without special treatment of shocks. By using a suitably refined grid, and by 
combining the donor cell differencing scheme with the flux corrected transport (FCT) scheme 
of Book et 

A uniform grid was used for all problems. The number of nodes was increased until there 
were no noticeable changes in the results. Typically, 60 to 240 grid points, depending on the 
problem, were needed in order to obtain an error bound of approximately one per cent. The 
spatial resolution was directly proportional to the scale of the problem. 

The subsequent report4 will focus on the application of the present method to continuous 
and instantaneous (batch) spills of LNG on an unconfined (undiked) water surface. The 
emphasis will be directed towards predicting the liquid pool size resulting from very large 
spills where the volume of the fluid released approaches that of an LNG supertanker 
compartment (approximately 25,000 m’). 

numerical diffusion is kept under control and shock fronts are fairly sharp. 

FORMULATION 

The non-linear shallow-water equations with cylindrical symmetry are used to model the spill 
of a liquid over a surface of a heavier liquid, or over a dry surface. Neglecting viscosity and 
surface tension, but accounting for evaporation from the LNG surface, the conservation 
equations for mass and momentum are (cf. References 1 and 6 for the derivation): 

+ v r = O  -+- a(&) a(urh) 
at ar  

au+d (2++ 
at  ar 2 
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where r and t denote the spatial and the temporal variable, g is the acceleration due to 
gravity, h(r, t) and u(r, t )  are the local height and depth-averaged velocity of the liquid, v is 
the constant evaporation velocity and 6 = (1 - p /p , )  where p is the density of the spilled liquid 
and ps  is the density of the surface liquid. (In spills on a solid surface p s  = m.) Incorporated in 
equation (2) is the relationship for average hydrostatic pressure, given by 

P = tpgh (3)  
Equations (1) and (2) are depth-averaged analogues to conservation laws of mass and 
momentum and have been successfully used in planar symmetry for similar  problem^.',^ It 
should be noted that the partial differential equations (1) and (2) are well defined only if 

It will be further assumed that the impounding dike is sufficiently high for no overflow to 
occur. (Solutions to the shallow-water equations accounting for spillage were given by 
Greenspan and Young.') 

In order to fully specify the problem, initial and boundary conditions are formulated. Since 
the fluid is to be released instantaneously, it is assumed that for t 5 0, the liquid is at rest, and 
is cylindrical in shape (Figure 1) so that 

h (r, 0) = ho (or any prescribed distribution), u (r, 0) = 0 

h >0. 

for O s r s R ,  (4) 

for R,<r=R,  ( 5 )  

h(r, 0) = 0 (or any prescribed distribution), u(r, 0) = 0 

where R, refers to the location of the dike (wall). 

in the axial direction. Therefore, 

and 

At the axis of symmetry and at the impounding dike the liquid must have zero momentum 

u(0, t) = 0 (6) 

U(R,, t) = 0 (7) 
constitute the boundary conditions. The values for the thickness of the liquid at the origin 
and at the dike must be locally computed from the compatibility equations, using the 
boundary conditions in equations (6)  and (7). Taking advantage of the hyperbolic nature of 
equations (1) and (2), these compatibility conditions, written in the form of appropriate 
characteristic equations, are (cf. Appendix) 

du dh  dr  
dt dt dt 

h- -c -=-cv  at r = 0 ,  along - = u - c  

(9) 
du dh uh dr  
dt dt r dt 

h - + c - = - c - - c v  for r>O andat  r=R,, along - = u + c  

In equations (8) and (9), c denotes the local speed of propagation of disturbances 

The boundary conditions on u (equations (6) and (7)) have now been specified at the two 
physical extremities of the computational domain, and h is determined from equations (8) 
and (9). Together, these are sufficient to close the formulation in all three cases, providing 
that h > 0 everywhere. If this latter criterion is not fulfilled, a boundary condition must be 
specified at the leading edge of the surge. 
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Looking first at the collapse of the liquid column onto a layer of the same liquid (with 
6 = l), no special problem arises as the liquid layer extends throughout the computational 
domain. Equations (6)-(9) are sufficient to complete the formulation of the problem. 

The cases of a spill on a solid surface (6 = 1) and of a spill of a lighter liquid on a heavier 
surface liquid (6 < 1) require special treatment whenever h(r, t )  = 0. Because the partial 
differential equations are defined only for those regions of space where h is non-zero, 
appropriate numerical treatment of the leading edge boundary conditions is required 
whenever the subject liquid propagates into regions devoid of that liquid. 

For spills on a solid surface, the velocity was specified at the leading edge by means of an 
analytic expression. This point will be discussed further in the next section. For spills of a 
lighter liquid on a heavier liquid, it is assumed that the lighter liquid propagates into the 
heavier fluid at the same rate as if their densities were equal, which is equivalent to 
specifying u = 0 ahead of the leading edge. 

METHOD OF SOLUTION 

One frequently used and natural approach to solving the hyperbolic shallow-water equation 
is the method of characteristics. Although this method avoids many of the numerical 
problems associated with finite difference methods, its use becomes exceedingly complicated 
when applied to multiple interacting shock waves in an Eulerian frame. For this reason, a 
finite difference approach which smears out the discontinuity by a controlled amount of 
diffusion was preferred for the solution to the flow problem. The amount of numerical 
diffusion was controlled by combining diffusive donor cell differencing scheme with the FCT 

Using the fully explicit second upwind difference scheme (donor-cell) on the terms 
involving u and central differences on the gravity term, the finite difference analogues to the 
governing conservation equations are: 

where i and n are, respectively, the spatial and temporal indices, and 

and 

Hy-, if U,zO u;-~ if U L z 0  
u; if UL<O 

The evaporation term is defined as r = -vri-l.  
The compatibility conditions in equations (8) and (9) are discretized along the appropriate 

characteristic (see Figure 2 )  and use is made of the boundary conditions in equations (6) and 



LIQUEFIED FUEL SPILLS. I 337 
t 

Figure 2. Schematic diagram for computing the boundary conditions using r-t space: (a) at the origin, (b) at the 
lending edge and at the wall 

(7), to give the following finite difference analogues 

= h: (u:/~-c:) - C:W+ At  
(-u:/2- c:) (-u?/2- c:) 

(14) 
(un/2+cl)  - ( c ? u l h ~ + c l w , )  A t  

(-ul/2 + cn_) 
hZ+' = h r  

r,(-u"2 + cn) 

where the symbols $. and - denote the values of the variables at the left-running and 
right-running characteristics, interpolated at the previous time step. 

For completeness it is noted that an alternative, simpler method was successfully tried in 
place of the compatibility relation at the wall (equation (14)). That approach sets h, 
according to the amount of mass needed at the finite difference cell adjacent to the wall in 
order to conserve the total mass within the system. Since this method tends to mask any 
possible numerical errors, the characteristics approach (equation (14)) was preferred. 

The numerical formulation of the leading edge velocity criterion for spills on a solid 
surface, based on the characteristics approach (equation (9)), presented a special problem 
due to the existence there of a very thin layer of liquid tangent to the surface. As an 
alternative, the velocity of the leading edge was assigned to be 2J(gh0). This analytical result 
for spills with planar symmetry5 is the maximum velocity possible for the flow. (In the 
present axisymmetric case the actual leading edge velocity will be smaller.) Numerical 
experimentation has shown the computed results to be insensitive to the value of the 
assigned leading edge velocity as long as it exceeds the actual flow velocity. For these cases, a 
region of zero thickness (no mass) was formed between the actual and the assigned edge. 

The stability conditions for the finite difference equations (11) and (12) is given by 
Hibberd and 

The present method is simpler than the Lax-Wendroff scheme used by Hibberd and 
Peregrine6 to solve the shallow-water equations, while still retaining the conservative and 
advective difference form, as well as the ability to treat shocks and reflections of fluid from 
obstacles. 

As in Reference 6, parasitic numerical oscillations were encountered in the solutions. 
These were successfully eliminated to the degree desired, by the use of an FCT algorithm 
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described by Book et aL2 and Boris and Book.3 This technique first diffuses the variable 
being processed, then flux-corrects it, and finally carries out anti-diffusion, while maintaining 
the conservative property of the equations. 

The effects of destabilizing truncation errors associated with the finite difference scheme 
were analysed using appropriate second-order accurate expressions for both time and space 
derivatives. The results showed no significant influence of these terms because both suffi- 
ciently fine grid spacing and the donor cell differencing scheme combined with FCT were 
used. 

NUMERICAL RESULTS AND DISCUSSION 

The method described in the previous sections has been used to simulate the various 
categories of instantaneous spills into an area enclosed by a dike. A good portion of the 
results presented are for cases whose geometry and dimensions were chosen to allow 
comparison with available experimental and computational results. Most often these studies 
employ water as both the spilled and the surface liquid. However, since the density appears 
in the governing equations only as the ratio of the spilled liquid density to the surface 
density, these results have a broader validity. In cases where comparisons of different sets of 
results are made, an attempt was made to keep constant the mesh size as well as all other 
parameters influencing the numerics. 

Figure 3 presents a comparison of solutions obtained for a collapse of a cylindrical column 
of liquid on: (a) a solid surface, (b) a layer of the same liquid, and (c) a liquid of higher 
density (this case simulates an LNG spill on water where S was 0.55 [for the density ratio 
pLNG/pWATER of 0.451 and 2, was taken as 4.23 x m/s). For each of the three categories a 
sequence of plots is presented showing the instantaneous thickness contour of the spilled 
liquid. It is to be recalled that in the case of two liquids of unequal densities, the lighter 
liquid is partially submerged in the heavier liquid where the fraction of its height submerged 
is proportional to the density ratio. The plotted results, therefore, show the second fluid's 
thickness, and not the height above the undisturbed surface. 

Each of the sequences exhibits the essential features of the flow, all observed and 
photographed in Reference 7. These are: the initial shape of the liquid column, the outward 
surge following release, impact at the dike, reflected bore traveling towards the origin, and 
spike produced by the liquid converging at the origin. The described sequence of events 
repeats itself since the fluid is idealized to be inviscid. The number of such cycles is limited in 
a real fluid by viscosity, whereas in the numerical simulation the dissipative effects of the 
residual numerical diffusion will eventually stop all motion. 

The significant and well documented' difference between a solid surface spill (case a), and 
the liquid's collapse on liquid (cases b and c), is the formation of a shock front during the 
initial surge in the latter and its absence in the former. Instead of forming a shock, the free 
surface of the liquid flowing over the solid surface smoothly slopes to merge tangentially with 
that surf ace. 

Upon impact on the face of the dike, a thin column of fluid was formed adjacent to the 
wall for all three cases simulated. In the case of the solid surface spill, this layer reached the 
highest level of the three cases. At its maximum, tbis height exceeded the original level of 
fluid prior to the release. Though the present result is consistent with the findings of 
Reference 5 (in which special treatment was used), it must be regarded with some scepticism 
as the assumptions inherent in the model may be violated when high and narrow layers of 
water form. It is interesting to contrast these results to the present guidelines on the height of 
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a) Liquid on a dry surface b) Liquid on same liquid c) LNG on water 
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Figure 3. Characteristic sequence over one cycle for the three categories of a liquid column collapsing into an 
impounded area. (Note the discrepant thickness scale in the set of results: liquid on same liquid) 
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the impounding wall9 which requires only that 

R, -R , r  ho-h, (16) 
where R, and h, are the location and height of the dike and R, and h, are the location of 
the tank’s outer wall and the height of the stored liquid. After reflection from the dike has 
taken place, all three simulations show a bore moving towards the origin into the advancing 
layer of liquid. 

A diagram showing the location as a function of time of the advancing front and the 
returning bore for the three cases discussed, appears in Figure 4. LNG spilled on water 
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Figure 4. r-t diagram tracing the location of the leading cdge of the surge and the returning bore for the three spill 
categories 
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Figure 5. Comparison of the planar and the axisymmetric cases of a liquid column collapsing into the same liquid 

shows the slowest spreading rate since it is partially submerged. The solid surface spill 
spreads at the fastest rate, approaching the limiting value (for the planar symmetry) of 
u = 2J(gh,). This fact, together with the slender and uniform thickness distribution noted 
from Figure 3, accounts for the high and thin layer formed at the dike by impacting fluid. 
Liquid collapsing onto a layer of the same liquid has an intermediate leading edge velocity 
which is a function of the depth distribution. 

A similar comparitive discussion of the bore returning towards the origin is quite a bit 
more complicated, as the entire area enclosed by the dike contains fluid flowing in both 
directions with non-uniform thickness and velocity distributions. 

Figure 5 presents a comparison between one-dimensional planar and axisymmetric simula- 
tion of a rectangular column of water collapsing into a layer of quiescent water, surrounded 
by an impounding dike. The particular dimensions used for this problem were chosen to 
correspond with the example in Reference 8 in which both the experimental and two- 
dimensional, computational results for the planar cases are given. Since the restraining wall is 
situated only twice as far from the origin as the boundary initially separating the deep from 
the shallow water, it is not surprising that for both the advancing and the reflected bore, the 
planar shock-front leads the radial shock front by only a small amount. There is a noticeable 
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Figure 6. Comparison between experimental results and the computed results using the present method for the 
collapse of a plane rectangular water column into water 

difference in the water height difference across the bore for the two cases as the consequence 
of mass conservation. These general observations hold for spills of various magnitudes, 
whether on a liquid surface or on dry land (in the latter case there is no bore prior to 
reflection from the dike, but the observations on velocity hold for the leading edge of the 
advancing fluid). 

The above results are in fair agreement with those of Reference 8. (See Figure 6) .  Since 
the one-dimensional theory converts the potential energy into motion in the radial direction 
only, it is easy to see why the leading edge velocity is overpredicted by the present method. 
The present method idealizes the advancing front as a sharp discontinuity while the 
experiment and the two-dimensional computed results (possible due to poor numerical 
resolution) show a much more diffused front. For this reason the location of both the peak 
and the foot of the wave from Reference 8 are shown in Figure 6. 

Next, the numerical results obtained by the present method are compared with the 
experimental results of Martin and Moyce" in Figure 7. The fluid used was water and the 
spill was carried out over a solid surface. The geometry of the column in both the experiment 
and the simulation prior to instantaneous release was taken as right circular cylinder with the 
height and radius of 5.72cm. The results appear to be in fair agreement when the rates of 
spreading of the liquid are compared. It is interesting to note that Hirt and Nichols1' showed 
very good agreement between their two-dimensional Navier-Stokes solution and the experi- 
mental results of Reference 10 for the 'broken dam' problem. It should be remembered that 
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Figure 7. r-t diagram tracing the location of the leading edge of a collapsing column of water, comparing 
experimental results with results obiained analytically: (a) cylindrical symmetry; (b) planar symmetry 

an idealized model was used for the present computation, in which viscosity and surface 
tension were neglected. These account for at least part of the discrepancy observed. 
Furthermore, the relative importance of friction and surface tension may be expected to be 
inversely proportional to the spill size. Therefore, the idealizations used in the model should 
present less of a hindrance for a larger, more practical spill, at which the present method is 
aimed. 

No attempt was made to resolve the displacement error between the two sets of results. 
This error is attributable to the experimental difficulties inherent in achieving an instantane- 
ous release as well as in the method of normalization used for reducing the experimental 
data. 

As a further check, a similar comparison is presented in Figure 7 for the planar 
configuration having the same dimensions and under the same conditions as the case just 
discussed. Here, the velocity of the leading edge was computed from the well k n o ~ n ~ > ~ *  
analytical result uLE = 2J(gh0). 

The ratio of the approximate slopes of experimental and calculated results is found to be 
1.3 for the cylindrical case, and 1.4 for the planar case. This similarity lends further support 
to the computed results and the method presented herein. 

CONCLUSION 

The shallow-water equations in radial symmetry were solved numerically to simulate 
several possible situations resulting from a hypothetical collapse of a storage tank sur- 
rounded by an impounding dike. The model sucessfully dealt with such a collapse using 
various combinations of liquids and spill conditions. Using no sub-modelling, all the features 
observed in experiments were numerically simulated. The numerical results were in good 
agreement with the available experiments, considering the approximate nature of the 
method. 
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Comparisons were presented for the following three categories of spills into a diked area: 
liquid onto a layer of the same liquid, liquid onto a solid surface, and LNG onto water. LNG 
spilled onto water (i.e. lighter liquid on denser liquid), showed the slowest spreading rate. 

The results corroborate the conclusion of Reference 7 that the present height require- 
ments of the impounding dike are insufficient in order to contain totally, a worst-case 
dynamic spill, especially on a solid surface. 
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APPENDIX 

The method of characteristics seeks a Galilean transformation, drldt, having the property 
that suitable linear combinations of the partial differential equations are exact differentials of 
time. 

In the moving reference frame, the partial differential equations are: 

at 

a u  ah ( ;;)a; 
--fag-+ u-- -=o 
at  ar 

Consider two parameters a and p. After equation (17) is multiplied by a, and equation (18) 
by p, the two expressions are added together. Now it is required that the resulting equation 

be an exact differential equation of time. Because the resulting coefficients of - and - must 

simultaneously vanish, one has 

ah a u  
ar  a r  

ah +p(u-$) = 0 
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This is satisfied if 

dr 
-= u r f c  
dt  

where 

For rf  0 this results in 

L- 
a=*- 

h 
p = 1  

c = J(Ggh) 

dr 
dt  

r f I c d h + h d u = T c  dt along - = U * c  

For r = 0, L’Hapital’s rule is applied to equation (18) and a similar procedure is followed. 
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